An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs
نویسندگان
چکیده
منابع مشابه
A New Method for Solving Nonlinear BVPs
As we know, the homotopy analysis method (HAM) provides us with a convenient way to adjust and control the convergence region and rate of the obtained series solutions. This great advantage of method is possible by finding a proper value of the so-called control parameter 0 c . In this paper, an efficient way of obtaining 0 c is proposed. Such value of parameter can be determined at the any ord...
متن کاملA SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS
In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...
متن کاملA modified parametric iteration method for solving nonlinear second order BVPs
The original parametric iteration method (PIM) provides the solution of a nonlinear second order boundary value problem (BVP) as a sequence of iterations. Since the successive iterations of the PIM may be very complex so that the resulting integrals in its iterative relation may not be performed analytically. Also, the implementation of the PIM generally leads to calculation of unneeded terms, ...
متن کاملAN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS
Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2013
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2013/259371